
NAG Fortran Library Routine Document

E04USF=E04USA

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

Note: this routine uses optional parameters to define choices in the problem specification and in the details of

the algorithm. If you wish to use default settings for all of the optional parameters, you need only read

Section 1 to Section 9 of this document. Refer to the additional Section 10, Section 11 and Section 12 for a

detailed description of the algorithm, the specification of the optional parameters and a description of the

monitoring information produced by the routine.

1 Purpose

E04USF=E04USA is designed to minimize an arbitrary smooth sum of squares function subject to
constraints (which may include simple bounds on the variables, linear constraints and smooth nonlinear
constraints) using a sequential quadratic programming (SQP) method. As many first derivatives as
possible should be supplied by the user; any unspecified derivatives are approximated by finite differences.
It is not intended for large sparse problems.

E04USF=E04USA may also be used for unconstrained, bound-constrained and linearly constrained
optimization.

E04USA is a version of E04USF that has additional parameters in order to make it safe for use in
multithreaded applications (see Section 5 below). The initialisation routine E04WBF must have been
called prior to calling E04USA.

2 Specifications

2.1 Specification for E04USF

SUBROUTINE E04USF(M, N, NCLIN, NCNLN, LDA, LDCJ, LDFJ, LDR, A, BL, BU,
1 Y, CONFUN, OBJFUN, ITER, ISTATE, C, CJAC, F, FJAC,
2 CLAMDA, OBJF, R, X, IWORK, LIWORK, WORK, LWORK, IUSER,
3 USER, IFAIL)

INTEGER M, N, NCLIN, NCNLN, LDA, LDCJ, LDFJ, LDR, ITER,
1 ISTATE(N+NCLIN+NCNLN), IWORK(LIWORK), LIWORK, LWORK,
2 IUSER(*), IFAIL
real A(LDA,*), BL(N+NCLIN+NCNLN), BU(N+NCLIN+NCNLN), Y(M),

1 C(*), CJAC(LDCJ,*), F(M), FJAC(LDFJ,N),
2 CLAMDA(N+NCLIN+NCNLN), OBJF, R(LDR,N), X(N),
3 WORK(LWORK), USER(*)
EXTERNAL CONFUN, OBJFUN

2.2 Specification for E04USA

SUBROUTINE E04USA(M, N, NCLIN, NCNLN, LDA, LDCJ, LDFJ, LDR, A, BL, BU,
1 Y, CONFUN, OBJFUN, ITER, ISTATE, C, CJAC, F, FJAC,
2 CLAMDA, OBJF, R, X, IWORK, LIWORK, WORK, LWORK, IUSER,
3 USER, LWSAV, IWSAV, RWSAV, IFAIL)

INTEGER M, N, NCLIN, NCNLN, LDA, LDCJ, LDFJ, LDR, ITER,
1 ISTATE(N+NCLIN+NCNLN), IWORK(LIWORK), LIWORK, LWORK,
2 IUSER(*), IWSAV(610), IFAIL
real A(LDA,*), BL(N+NCLIN+NCNLN), BU(N+NCLIN+NCNLN), Y(M),

1 C(*), CJAC(LDCJ,*), F(M), FJAC(LDFJ,N),
2 CLAMDA(N+NCLIN+NCNLN), OBJF, R(LDR,N), X(N),
3 WORK(LWORK), USER(*), RWSAV(475)
LOGICAL LWSAV(120)
EXTERNAL CONFUN, OBJFUN

E04 – Minimizing or Maximizing a Function E04USF=E04USA

[NP3546/20A] E04USF=E04USA.1



Before calling E04USA, or either of the option setting routines E04UQA or E04URA, routine E04WBF
must be called. The specification for E04WBF is:

SUBROUTINE E04WBF(RNAME, CWSAV, LCWSAV, LWSAV, LLWSAV, IWSAV, LIWSAV,
1 RWSAV, LRWSAV, IFAIL)

INTEGER LCWSAV, LLWSAV, IWSAV(LIWSAV), LIWSAV, LRWSAV, IFAIL
real RWSAV(LRWSAV)
LOGICAL LWSAV(LLWSAV)
CHARACTER*6 RNAME
CHARACTER*80 CWSAV(LCWSAV)

E04WBF should be called with RNAME ¼ ’E04USA’. LCWSAV, LLWSAV, LIWSAV and LRWSAV, the
declared lengths of CWSAV, LWSAV, IWSAV and RWSAV respectively, must satisfy:

LCWSAV � 1

LLWSAV � 120

LIWSAV � 610

LRWSAV � 475

The contents of the arrays CWSAV, LWSAV, IWSAV and RWSAV must not be altered between calling
routines E04WBF and E04USA, E04UQA or E04URA.

3 Description

E04USF=E04USA is designed to solve the nonlinear least-squares programming problem – the
minimization of a smooth nonlinear sum of squares function subject to a set of constraints on the
variables. The problem is assumed to be stated in the following form:

Minimize
x2Rn

F ðxÞ ¼ 1
2

Xm
i¼1

ðyi � fiðxÞÞ2 subject to l �
x

ALx
cðxÞ

8<
:

9=
; � u; ð1Þ

where F ðxÞ (the objective function) is a nonlinear function which can be represented as the sum of squares
of m subfunctions ðy1 � f1ðxÞÞ; ðy2 � f2ðxÞÞ; . . . ; ðym � fmðxÞÞ, the yi are constant, AL is an nL by n
constant matrix, and cðxÞ is an nN element vector of nonlinear constraint functions. (The matrix AL and
the vector cðxÞ may be empty.) The objective function and the constraint functions are assumed to be
smooth, i.e., at least twice-continuously differentiable. (The method of E04USF=E04USA will usually
solve (1) if there are only isolated discontinuities away from the solution.)

Note that although the bounds on the variables could be included in the definition of the linear constraints,
we prefer to distinguish between them for reasons of computational efficiency. For the same reason, the
linear constraints should not be included in the definition of the nonlinear constraints. Upper and lower
bounds are specified for all the variables and for all the constraints. An equality constraint can be specified
by setting li ¼ ui. If certain bounds are not present, the associated elements of l or u can be set to special
values that will be treated as �1 or þ1. (See the description of the optional parameter Infinite Bound
Size in Section 11.2.)

The user must supply an initial estimate of the solution to (1), together with subroutines that define

fðxÞ ¼ ðf1ðxÞ; f2ðxÞ; . . . ; fmðxÞÞT , cðxÞ and as many first partial derivatives as possible; unspecified
derivatives are approximated by finite differences.

The subfunctions are defined by the array Y and subroutine OBJFUN, and the nonlinear constraints are
defined by subroutine CONFUN. On every call, these subroutines must return appropriate values of fðxÞ
and cðxÞ. The user should also provide the available partial derivatives. Any unspecified derivatives are
approximated by finite differences; see Section 11.2 for a discussion of the optional parameter Derivative
Level. Just before either OBJFUN or CONFUN is called, each element of the current gradient array FJAC
or CJAC is initialised to a special value. On exit, any element that retains the value is estimated by finite
differences. Note that if there are any nonlinear constraints, then the first call to CONFUN will precede
the first call to OBJFUN.

E04USF=E04USA NAG Fortran Library Manual

E04USF=E04USA.2 [NP3546/20A]



For maximum reliability, it is preferable for the user to provide all partial derivatives (see Chapter 8 of Gill
et al. (1981) for a detailed discussion). If all gradients cannot be provided, it is similarly advisable to
provide as many as possible. While developing the subroutines OBJFUN and CONFUN, the optional
parameter Verify (see Section 11.2) should be used to check the calculation of any known gradients.

4 References

Gill P E, Murray W and Wright M H (1981) Practical Optimization Academic Press

Hock W and Schittkowski K (1981) Test Examples for Nonlinear Programming Codes. Lecture Notes in
Economics and Mathematical Systems 187 Springer-Verlag

5 Parameters

1: M – INTEGER Input

On entry: m, the number of subfunctions associated with F ðxÞ.
Constraint: M > 0.

2: N – INTEGER Input

On entry: n, the number of variables.

Constraint: N > 0.

3: NCLIN – INTEGER Input

On entry: nL, the number of general linear constraints.

Constraint: NCLIN � 0.

4: NCNLN – INTEGER Input

On entry: nN , the number of nonlinear constraints.

Constraint: NCNLN � 0.

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which
E04USF=E04USA is called.

Constraint: LDA � maxð1;NCLINÞ.

6: LDCJ – INTEGER Input

On entry: the first dimension of the array CJAC as declared in the (sub)program from which
E04USF=E04USA is called.

Constraint: LDCJ � maxð1;NCNLNÞ.

7: LDFJ – INTEGER Input

On entry: the first dimension of the array FJAC as declared in the (sub)program from which
E04USF=E04USA is called.

Constraint: LDFJ � M.

8: LDR – INTEGER Input

On entry: the first dimension of the array R as declared in the (sub)program from which
E04USF=E04USA is called.

Constraint: LDR � N.

E04 – Minimizing or Maximizing a Function E04USF=E04USA

[NP3546/20A] E04USF=E04USA.3



9: A(LDA,*) – real array Input

Note: the second dimension of the array A must be at least N when NCLIN > 0, and at least 1
otherwise.

On entry: the ith row of the array A must contain the ith row of the matrix AL of general linear
constraints in (1). That is, the ith row contains the coefficients of the ith general linear constraint,
for i ¼ 1; 2; . . . ;NCLIN.

If NCLIN ¼ 0 then the array A is not referenced.

10: BL(N+NCLIN+NCNLN) – real array Input
11: BU(N+NCLIN+NCNLN) – real array Input

On entry: BL must contain the lower bounds and BU the upper bounds, for all the constraints in the
following order. The first n elements of each array must contain the bounds on the variables, the
next nL elements the bounds for the general linear constraints (if any) and the next nN elements the

bounds for the general nonlinear constraints (if any). To specify a non-existent lower bound (i.e.,
lj ¼ �1), set BLðjÞ � �bigbnd, and to specify a non-existent upper bound (i.e., uj ¼ þ1), set

BUðjÞ � bigbnd; the default value of bigbnd is 1020, but this may be changed by the optional
parameter Infinite Bound Size (see Section 11.2). To specify the jth constraint as an equality, set
BLðjÞ ¼ BUðjÞ ¼ �, say, where j�j < bigbnd.

Constraints:

BLðjÞ � BUðjÞ, for j ¼ 1; 2; . . . ;Nþ NCLINþ NCNLN,
j�j < bigbnd when BLðjÞ ¼ BUðjÞ ¼ �.

12: Y(M) – real array Input

On entry: the coefficients of the constant vector y of the objective function.

13: CONFUN – SUBROUTINE, supplied by the user. External Procedure

CONFUN must calculate the vector cðxÞ of nonlinear constraint functions and (optionally) its

Jacobian (¼ @c

@x
) for a specified n element vector x. If there are no nonlinear constraints (i.e.,

NCNLN ¼ 0), CONFUN will never be called by E04USF=E04USA and CONFUN may be the
dummy routine E04UDM. (E04UDM is included in the NAG Fortran Library and so need not be
supplied by the user. Its name may be implementation-dependent: see the Users’ Note for your
implementation for details.) If there are nonlinear constraints, the first call to CONFUN will occur
before the first call to OBJFUN.

Its specification is:

SUBROUTINE CONFUN(MODE, NCNLN, N, LDCJ, NEEDC, X, C, CJAC, NSTATE,
1 IUSER, USER)

INTEGER MODE, NCNLN, N, LDCJ, NEEDC(NCNLN), NSTATE,
1 IUSER(*)
real X(N), C(NCNLN), CJAC(LDCJ,N), USER(*)

1: MODE – INTEGER Input/Output

On entry: MODE indicates which values must be assigned during each call of CONFUN.
Only the following values need be assigned, for each value of i such that NEEDCðiÞ > 0:

if MODE ¼ 0, CðiÞ;
if MODE ¼ 1, all available elements in the ith row of CJAC;

if MODE ¼ 2, CðiÞ and all available elements in the ith row of CJAC.

On exit: MODE may be set to a negative value if the user wishes to terminate the solution
to the current problem, and in this case E04USF=E04USA will terminate with IFAIL set to
MODE.

E04USF=E04USA NAG Fortran Library Manual

E04USF=E04USA.4 [NP3546/20A]



2: NCNLN – INTEGER Input

On entry: nN , the number of nonlinear constraints.

Constraint: NCNLN � 0.

3: N – INTEGER Input

On entry: n, the number of variables.

4: LDCJ – INTEGER Input

On entry: the first dimension of the array CJAC as declared in the (sub)program from
which E04USF=E04USA is called.

Constraint: LDCJ � maxð1;NCNLNÞ.

5: NEEDC(NCNLN) – INTEGER array Input

On entry: the indices of the elements of C and/or CJAC that must be evaluated by
CONFUN. If NEEDCðiÞ > 0, then the ith element of C and/or the available elements of
the ith row of CJAC (see parameter MODE above) must be evaluated at x.

6: X(N) – real array Input

On entry: x, the vector of variables at which the constraint functions and/or all available
elements of the constraint Jacobian are to be evaluated.

7: C(NCNLN) – real array Output

On exit: if NEEDCðiÞ > 0 and MODE ¼ 0 or 2, CðiÞ must contain the value of the ith
constraint at x. The remaining elements of C, corresponding to the non-positive elements
of NEEDC, are ignored.

8: CJAC(LDCJ,N) – real array Output

On exit: if NEEDCðiÞ > 0 and MODE ¼ 1 or 2, the ith row of CJAC must contain the
available elements of the vector rci given by

rci ¼
@ci
@x1

;
@ci
@x2

; . . . ;
@ci
@xn

� �T

;

where @ci
@xj

is the partial derivative of the ith constraint with respect to the jth variable,

evaluated at the point x. See also the parameter NSTATE below. The remaining rows of
CJAC, corresponding to non-positive elements of NEEDC, are ignored.

If all elements of the constraint Jacobian are known (i.e., Derivative Level ¼ 2 or 3
(default value ¼ 3; see Section 11.2)), any constant elements may be assigned to CJAC
one time only at the start of the optimization. An element of CJAC that is not
subsequently assigned in CONFUN will retain its initial value throughout. Constant
elements may be loaded into CJAC either before the call to E04USF=E04USA or during
the first call to CONFUN (signalled by the value NSTATE ¼ 1). The ability to preload
constants is useful when many Jacobian elements are identically zero, in which case CJAC
may be initialised to zero and non-zero elements may be reset by CONFUN.

Note that constant non-zero elements do affect the values of the constraints. Thus, if
CJACði; jÞ is set to a constant value, it need not be reset in subsequent calls to CONFUN,
but the value CJACði; jÞ � XðjÞ must nonetheless be added to CðiÞ. For example, if
CJACð1; 1Þ ¼ 2 and CJACð1; 2Þ ¼ �5, then the term 2 � Xð1Þ � 5 � Xð2Þ must be
included in the definition of C(1).

It must be emphasized that, if Derivative Level ¼ 0 or 1, unassigned elements of CJAC
are not treated as constant; they are estimated by finite differences, at non-trivial expense.
If the user does not supply a value for Difference Interval (the default; see Section 11.2),
an interval for each element of x is computed automatically at the start of the optimization.

E04 – Minimizing or Maximizing a Function E04USF=E04USA

[NP3546/20A] E04USF=E04USA.5



The automatic procedure can usually identify constant elements of CJAC, which are then
computed once only by finite differences.

9: NSTATE – INTEGER Input

On entry: if NSTATE ¼ 1 then E04USF=E04USA is calling CONFUN for the first time.
This parameter setting allows the user to save computation time if certain data must be
read or calculated only once.

10: IUSER(*) – INTEGER array User Workspace
11: USER(*) – real array User Workspace

CONFUN is called from E04USF=E04USA with the parameters IUSER and USER as
supplied to E04USF=E04USA. The user is free to use the arrays IUSER and USER to
supply information to CONFUN as an alternative to using COMMON.

CONFUN must be declared as EXTERNAL in the (sub)program from which E04USF=E04USA is
called. Parameters denoted as Input must not be changed by this procedure.

Note: CONFUN should be tested separately before being used in conjunction with
E04USF=E04USA. See also the optional parameter Verify in Section 11.2. Parameters denoted
as Input must not be changed by this procedure.

14: OBJFUN – SUBROUTINE, supplied by the user. External Procedure

OBJFUN must calculate either the ith element of the vector fðxÞ ¼ ðf1ðxÞ; f2ðxÞ; . . . ; fmðxÞÞT or

all m elements of fðxÞ and (optionally) its Jacobian (¼ @f

@x
) for a specified n element vector x.

Its specification is:

SUBROUTINE OBJFUN(MODE, M, N, LDFJ, NEEDFI, X, F, FJAC, NSTATE,
1 IUSER, USER)

INTEGER MODE, M, N, LDFJ, NEEDFI, NSTATE, IUSER(*)
real X(N), F(M), FJAC(LDFJ,N), USER(*)

1: MODE – INTEGER Input/Output

On entry: MODE indicates which values must be assigned during each call of OBJFUN.
Only the following values need be assigned:

if MODE ¼ 0 and NEEDFI ¼ i > 0, FðiÞ;
if MODE ¼ 0 and NEEDFI < 0, F;

if MODE ¼ 1 and NEEDFI < 0, all available elements of FJAC;

if MODE ¼ 2 and NEEDFI < 0, F and all available elements of FJAC.

On exit: MODE may be set to a negative value if the user wishes to terminate the solution
to the current problem, and in this case E04USF=E04USA will terminate with IFAIL set to
MODE.

2: M – INTEGER Input

On entry: m, the number of subfunctions.

3: N – INTEGER Input

On entry: n, the number of variables.

4: LDFJ – INTEGER Input

On entry: the first dimension of the array FJAC as declared in the (sub)program from
which E04USF=E04USA is called.

E04USF=E04USA NAG Fortran Library Manual

E04USF=E04USA.6 [NP3546/20A]



5: NEEDFI – INTEGER Input

On entry: if NEEDFI ¼ i > 0, only the ith element of fðxÞ needs to be evaluated at x; the
remaining elements need not be set. This can result in significant computational savings
when m � n.

6: X(N) – real array Input

On entry: x, the vector of variables at which fðxÞ and/or all available elements of its
Jacobian are to be evaluated.

7: F(M) – real array Output

On exit: if MODE ¼ 0 and NEEDFI ¼ i > 0, FðiÞ must contain the value of fi at x. If
MODE ¼ 0 or 2 and NEEDFI < 0, FðiÞ must contain the value of fi at x, for
i ¼ 1; 2; . . . ;m.

8: FJAC(LDFJ,N) – real array Output

On exit: if MODE ¼ 1 or 2 and NEEDFI < 0, the ith row of FJAC must contain the
available elements of the vector rfi given by

rfi ¼
@fi
@x1

;
@fi
@x2

; . . . ;
@fi
@xn

� �T

;

evaluated at the point x. See also the parameter NSTATE below.

9: NSTATE – INTEGER Input

On entry: if NSTATE ¼ 1 then E04USF=E04USA is calling OBJFUN for the first time.
This parameter setting allows the user to save computation time if certain data must be
read or calculated only once.

10: IUSER(*) – INTEGER array User Workspace
11: USER(*) – real array User Workspace

OBJFUN is called from E04USF=E04USA with the parameters IUSER and USER as
supplied to E04USF=E04USA. The user is free to use the arrays IUSER and USER to
supply information to OBJFUN as an alternative to using COMMON.

OBJFUN must be declared as EXTERNAL in the (sub)program from which E04USF=E04USA is
called. Parameters denoted as Input must not be changed by this procedure.

Note: OBJFUN should be tested separately before being used in conjunction with
E04USF=E04USA. See also the optional parameter Verify in Section 11.2.

15: ITER – INTEGER Output

On exit: the number of major iterations performed.

16: ISTATE(N+NCLIN+NCNLN) – INTEGER array Input/Output

On entry: ISTATE need not be set if the (default) Cold Start option is used.

If the Warm Start option has been chosen (see Section 11.2), the elements of ISTATE
corresponding to the bounds and linear constraints define the initial working set for the procedure
that finds a feasible point for the linear constraints and bounds. The active set at the conclusion of
this procedure and the elements of ISTATE corresponding to nonlinear constraints then define the
initial working set for the first QP subproblem. More precisely, the first n elements of ISTATE refer
to the upper and lower bounds on the variables, the next nL elements refer to the upper and lower
bounds on ALx, and the next nN elements refer to the upper and lower bounds on cðxÞ. Possible
values for ISTATEðjÞ are as follows:

E04 – Minimizing or Maximizing a Function E04USF=E04USA

[NP3546/20A] E04USF=E04USA.7



ISTATEðjÞ Meaning

0 The corresponding constraint is not in the initial QP working set.
1 This inequality constraint should be in the working set at its lower bound.
2 This inequality constraint should be in the working set at its upper bound.
3 This equality constraint should be in the initial working set. This value must not be

specified unless BLðjÞ ¼ BUðjÞ.
The values �2, �1 and 4 are also acceptable but will be modified by the routine. If
E04USF=E04USA has been called previously with the same values of N, NCLIN and NCNLN,
ISTATE already contains satisfactory information. (See also the description of the optional
parameter Warm Start in Section 11.2.) The routine also adjusts (if necessary) the values supplied
in X to be consistent with ISTATE.

Constraint: �2 � ISTATEðjÞ � 4, for j ¼ 1; 2; . . . ;Nþ NCLINþ NCNLN.

On exit: the status of the constraints in the QP working set at the point returned in X. The
significance of each possible value of ISTATEðjÞ is as follows:

ISTATEðjÞ Meaning

�2 This constraint violates its lower bound by more than the appropriate feasibility
tolerance (see the optional parameters Linear Feasibility Tolerance and Nonlinear
Feasibility Tolerance in Section 11.2). This value can occur only when no feasible
point can be found for a QP subproblem.

�1 This constraint violates its upper bound by more than the appropriate feasibility
tolerance (see the optional parameters Linear Feasibility Tolerance and Nonlinear
Feasibility Tolerance in Section 11.2). This value can occur only when no feasible
point can be found for a QP subproblem.

0 The constraint is satisfied to within the feasibility tolerance, but is not in the QP
working set.

1 This inequality constraint is included in the QP working set at its lower bound.
2 This inequality constraint is included in the QP working set at its upper bound.
3 This constraint is included in the QP working set as an equality. This value of

ISTATE can occur only when BLðjÞ ¼ BUðjÞ.

17: C(*) – real array Output

Note: the dimension of the array C must be at least maxð1;NCNLNÞ.
On exit: if NCNLN > 0, CðiÞ contains the value of the ith nonlinear constraint function ci at the
final iterate, for i ¼ 1; 2; . . . ;NCNLN.

If NCNLN ¼ 0 then the array C is not referenced.

18: CJAC(LDCJ,*) – real array Input/Output

Note: the second dimension of the array CJAC must be at least N when NCNLN > 0, and at least 1
otherwise.

On entry: in general, CJAC need not be initialised before the call to E04USF=E04USA. However,
if Derivative Level ¼ 3 (the default; see Section 11.2), the user may optionally set the constant
elements of CJAC (see parameter NSTATE in the description of CONFUN). Such constant
elements need not be re-assigned on subsequent calls to CONFUN.

On exit: if NCNLN > 0, CJAC contains the Jacobian matrix of the nonlinear constraint functions at
the final iterate, i.e., CJACði; jÞ contains the partial derivative of the ith constraint function with
respect to the jth variable, for i ¼ 1; 2; . . . ;NCNLN; j ¼ 1; 2; . . . ;N. (See the discussion of
parameter CJAC under CONFUN.)

If NCNLN ¼ 0 then the array CJAC is not referenced.

19: F(M) – real array Output

On exit: FðiÞ contains the value of the ith function fi at the final iterate, for i ¼ 1; 2; . . . ;M.

E04USF=E04USA NAG Fortran Library Manual

E04USF=E04USA.8 [NP3546/20A]



20: FJAC(LDFJ,N) – real array Input/Output

On entry: in general, FJAC need not be initialised before the call to E04USF=E04USA. However, if
Derivative Level ¼ 3 (the default; see Section 11.2), the user may optionally set the constant
elements of FJAC (see parameter NSTATE in the description of OBJFUN). Such constant elements
need not be re-assigned on subsequent calls to OBJFUN.

On exit: the Jacobian matrix of the functions f1; f2; . . . ; fm at the final iterate, i.e., FJACði; jÞ
contains the partial derivative of the ith function with respect to the jth variable, for i ¼ 1; 2 . . . ;M;
j ¼ 1; 2; . . . ;N. (See also the discussion of parameter FJAC under OBJFUN.)

21: CLAMDA(N+NCLIN+NCNLN) – real array Input/Output

On entry: CLAMDA need not be set if the (default) Cold Start option is used.

If the Warm Start option has been chosen (see Section 11.2), CLAMDAðjÞ must contain a
multiplier estimate for each nonlinear constraint with a sign that matches the status of the constraint
specified by the ISTATE array (as above), for j ¼ Nþ NCLINþ 1;Nþ NCLINþ 2; . . . ;
Nþ NCLINþ NCNLN. The remaining elements need not be set. Note that if the jth constraint
is defined as ‘inactive’ by the initial value of the ISTATE array (i.e., ISTATEðjÞ ¼ 0), CLAMDAðjÞ
should be zero; if the jth constraint is an inequality active at its lower bound (i.e., ISTATEðjÞ ¼ 1),
CLAMDAðjÞ should be non-negative; if the jth constraint is an inequality active at its upper bound
(i.e., ISTATEðjÞ ¼ 2, CLAMDAðjÞ should be non-positive. If necessary, the routine will modify
CLAMDA to match these rules.

On exit: the values of the QP multipliers from the last QP subproblem. CLAMDAðjÞ should be
non-negative if ISTATEðjÞ ¼ 1 and non-positive if ISTATEðjÞ ¼ 2.

22: OBJF – real Output

On exit: the value of the objective function at the final iterate.

23: R(LDR,N) – real array Input/Output

On entry: R need not be initialised if the (default) Cold Start option is used.

If the Warm Start option has been chosen (see Section 11.2), R must contain the upper triangular
Cholesky factor R of the initial approximation of the Hessian of the Lagrangian function, with the
variables in the natural order. Elements not in the upper triangular part of R are assumed to be zero
and need not be assigned.

On exit: if Hessian ¼ No (the default; see Section 11.2), R contains the upper triangular Cholesky

factor R of QT ~HHQ, an estimate of the transformed and re-ordered Hessian of the Lagrangian at x
(see (6) of the document for E04UCF=E04UCA). If Hessian ¼ Yes, R contains the upper triangular
Cholesky factor R of H, the approximate (untransformed) Hessian of the Lagrangian, with the
variables in the natural order.

24: X(N) – real array Input/Output

On entry: an initial estimate of the solution.

On exit: the final estimate of the solution.

25: IWORK(LIWORK) – INTEGER array Workspace
26: LIWORK – INTEGER Input

On entry: the first dimension of the array IWORK as declared in the (sub)program from which
E04USF=E04USA is called.

Constraint: LIWORK � 3� Nþ NCLINþ 2� NCNLN.

E04 – Minimizing or Maximizing a Function E04USF=E04USA

[NP3546/20A] E04USF=E04USA.9



27: WORK(LWORK) – real array Workspace
28: LWORK – INTEGER Input

On entry: the first dimension of the array WORK as declared in the (sub)program from which
E04USF=E04USA is called.

Constraints:

if NCNLN ¼ 0 and NCLIN ¼ 0, then LWORK � 20� NþM� ðNþ 3Þ;
if NCNLN ¼ 0 and NCLIN > 0, then LWORK � 2� N2 þ 20� Nþ 11� NCLINþ
M� ðNþ 3Þ;
if NCNLN > 0 and NCLIN � 0, then LWORK � 2� N2 þ N� NCLINþ 2� N�
NCNLNþ 20� Nþ 11� NCLINþ 21� NCNLNþM� ðNþ 3Þ.

The amounts of workspace provided and required are (by default) output on the current advisory
message unit (as defined by X04ABF). As an alternative to computing LIWORK and LWORK
from the formulas given above, the user may prefer to obtain appropriate values from the output of a
preliminary run with LIWORK and LWORK set to 1. (E04USF=E04USA will then terminate with
IFAIL ¼ 9.)

29: IUSER(*) – INTEGER array User Workspace

Note: the dimension of the array IUSER must be at least 1.

IUSER is not used by E04USF=E04USA, but is passed directly to routines CONFUN and OBJFUN
and may be used to pass information to those routines.

30: USER(*) – real array User Workspace

Note: the dimension of the array USER must be at least 1.

USER is not used by E04USF=E04USA, but is passed directly to routines CONFUN and OBJFUN
and may be used to pass information to those routines.

31: IFAIL – INTEGER Input/Output

Note: for E04USA, IFAIL does not occur in this position in the parameter list. See the additional

parameters described below.

On entry: IFAIL must be set to 0, �1 or 1. Users who are unfamiliar with this parameter should
refer to Chapter P01 for details.

On exit: IFAIL ¼ 0 unless the routine detects an error (see Section 6).

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then the
value 1 is recommended. Otherwise, because for this routine the values of the output parameters
may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the value �1 or 1
is used it is essential to test the value of IFAIL on exit.

E04USF=E04USA returns with IFAIL ¼ 0 if the iterates have converged to a point x that satisfies
the first-order Kuhn–Tucker conditions (see Section 10.1 of the document for E04UCF=E04UCA) to

the accuracy requested by the optional parameter Optimality Tolerance (default value ¼ �R
0:8,

where �R is the value of the optional parameter Function Precision (default value ¼ �0:9, where � is
the machine precision; see Section 11.2)), i.e., the projected gradient and active constraint residuals
are negligible at x.

The user should check whether the following four conditions are satisfied:

(i) the final value of Norm Gz (see Section 8.1) is significantly less than that at the starting point;

(ii) during the final major iterations, the values of Step and Mnr (see Section 8.1) are both one;

E04USF=E04USA NAG Fortran Library Manual

E04USF=E04USA.10 [NP3546/20A]



(iii) the last few values of both Norm Gz and Violtn (see Section 8.1) become small at a fast linear
rate; and

(iv) Cond Hz (see Section 8.1) is small.

If all these conditions hold, x is almost certainly a local minimum of (1).

Note: the following are additional parameters for specific use with E04USA. Users of E04USF therefore need

not read the remainder of this section.

31: LWSAV(120) – LOGICAL array Workspace
32: IWSAV(610) – INTEGER array Workspace
33: RWSAV(475) – real array Workspace

The arrays LWSAV, IWSAV and RWSAV must not be altered between calls to any of the routines
E04WBF, E04USA, E04UQA or E04URA.

34: IFAIL – INTEGER Input/Output

Note: see the parameter description for IFAIL above.

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL < 0

A negative value of IFAIL indicates an exit from E04USF=E04USA because the user set
MODE < 0 in routine OBJFUN or CONFUN. The value of IFAIL will be the same as the user’s
setting of MODE.

IFAIL ¼ 1

The final iterate x satisfies the first-order Kuhn–Tucker conditions (see Section 10.1 of the document
for E04UCF=E04UCA) to the accuracy requested, but the sequence of iterates has not yet
converged. E04USF=E04USA was terminated because no further improvement could be made in
the merit function (see Section 8.1).

This value of IFAIL may occur in several circumstances. The most common situation is that the
user asks for a solution with accuracy that is not attainable with the given precision of the problem

(as specified by the optional parameter Function Precision (default value ¼ �0:9, where � is the
machine precision; see Section 11.2)). This condition will also occur if, by chance, an iterate is an
‘exact’ Kuhn–Tucker point, but the change in the variables was significant at the previous iteration.
(This situation often happens when minimizing very simple functions, such as quadratics.)

If the four conditions listed in Section 5 for IFAIL ¼ 0 are satisfied, x is likely to be a solution of
(1) even if IFAIL ¼ 1.

IFAIL ¼ 2

E04USF=E04USA has terminated without finding a feasible point for the linear constraints and
bounds, which means that either no feasible point exists for the given value of the optional

parameter Linear Feasibility Tolerance (default value ¼
ffiffi
�

p
, where � is the machine precision; see

Section 11.2), or no feasible point could be found in the number of iterations specified by the
optional parameter Minor Iteration Limit (default value ¼ maxð50; 3ðnþ nL þ nNÞÞ; see
Section 11.2). The user should check that there are no constraint redundancies. If the data for
the constraints are accurate only to an absolute precision �, the user should ensure that the value of
the optional parameter Linear Feasibility Tolerance is greater than �. For example, if all elements
of AL are of order unity and are accurate to only three decimal places, Linear Feasibility

Tolerance should be at least 10�3.

E04 – Minimizing or Maximizing a Function E04USF=E04USA

[NP3546/20A] E04USF=E04USA.11



IFAIL ¼ 3

No feasible point could be found for the nonlinear constraints. The problem may have no feasible
solution. This means that there has been a sequence of QP subproblems for which no feasible point
could be found (indicated by I at the end of each line of intermediate printout produced by the
major iterations; see Section 8.1). This behaviour will occur if there is no feasible point for the
nonlinear constraints. (However, there is no general test that can determine whether a feasible point
exists for a set of nonlinear constraints.) If the infeasible subproblems occur from the very first
major iteration, it is highly likely that no feasible point exists. If infeasibilities occur when earlier
subproblems have been feasible, small constraint inconsistencies may be present. The user should
check the validity of constraints with negative values of ISTATE. If the user is convinced that a
feasible point does exist, E04USF=E04USA should be restarted at a different starting point.

IFAIL ¼ 4

The limiting number of iterations (as determined by the optional parameter Major Iteration Limit
(default value ¼ maxð50; 3ðnþ nLÞ þ 10nNÞ; see Section 11.2) has been reached.

If the algorithm appears to be making satisfactory progress, then Major Iteration Limit may be too
small. If so, either increase its value and rerun E04USF=E04USA or, alternatively, rerun
E04USF=E04USA using the Warm Start option (see Section 11.2). If the algorithm seems to be
making little or no progress however, then the user should check for incorrect gradients or ill-
conditioning as described below under IFAIL ¼ 6.

Note that ill-conditioning in the working set is sometimes resolved automatically by the algorithm,
in which case performing additional iterations may be helpful. However, ill-conditioning in the
Hessian approximation tends to persist once it has begun, so that allowing additional iterations
without altering R is usually inadvisable. If the quasi-Newton update of the Hessian approximation
was reset during the latter major iterations (i.e., an R occurs at the end of each line of intermediate
printout; see Section 8.1), it may be worthwhile to try a Warm Start at the final point as suggested
above.

IFAIL ¼ 5

Not used by this routine.

IFAIL ¼ 6

x does not satisfy the first-order Kuhn–Tucker conditions (see Section 10.1 of the document for
E04UCF=E04UCA), and no improved point for the merit function (see Section 8.1) could be found
during the final line search.

This sometimes occurs because an overly stringent accuracy has been requested, i.e., the value of

the optional parameter Optimality Tolerance (default value ¼ �R
0:8, where �R is the value of the

optional parameter Function Precision (default value ¼ �0:9, where � is the machine precision; see
Section 11.2)) is too small. In this case the user should apply the four tests described above under
IFAIL ¼ 0 to determine whether or not the final solution is acceptable (see Gill et al. (1981), for a
discussion of the attainable accuracy).

If many iterations have occurred in which essentially no progress has been made and
E04USF=E04USA has failed completely to move from the initial point then subroutines
OBJFUN and/or CONFUN may be incorrect. The user should refer to comments below under
IFAIL ¼ 7 and check the gradients using the optional parameter Verify (default value ¼ 0; see
Section 11.2). Unfortunately, there may be small errors in the objective and constraint gradients that
cannot be detected by the verification process. Finite difference approximations to first derivatives
are catastrophically affected by even small inaccuracies. An indication of this situation is a dramatic
alteration in the iterates if the finite difference interval is altered. One might also suspect this type
of error if a switch is made to central differences even when Norm Gz and Violtn (see Section 8.1)
are large.

E04USF=E04USA NAG Fortran Library Manual

E04USF=E04USA.12 [NP3546/20A]



Another possibility is that the search direction has become inaccurate because of ill-conditioning in
the Hessian approximation or the matrix of constraints in the working set; either form of ill-
conditioning tends to be reflected in large values of Mnr (the number of iterations required to solve
each QP subproblem; see Section 8.1).

If the condition estimate of the projected Hessian (Cond Hz; see Section 12) is extremely large, it
may be worthwhile rerunning E04USF=E04USA from the final point with the Warm Start option.
In this situation, ISTATE and CLAMDA should be left unaltered and R should be reset to the
identity matrix.

If the matrix of constraints in the working set is ill-conditioned (i.e., Cond T is extremely large; see
Section 12), it may be helpful to run E04USF=E04USA with a relaxed value of the Feasibility

Tolerance (default value ¼
ffiffi
�

p
, where � is the machine precision; see Section 11.2). (Constraint

dependencies are often indicated by wide variations in size in the diagonal elements of the matrix T ,
whose diagonals will be printed if Major Print Level � 30 (see Section 11.2)).

IFAIL ¼ 7

The user-provided derivatives of the subfunctions and/or nonlinear constraints appear to be
incorrect.

Large errors were found in the derivatives of the subfunctions and/or nonlinear constraints. This
value of IFAIL will occur if the verification process indicated that at least one Jacobian element had
no correct figures. The user should refer to the printed output to determine which elements are
suspected to be in error.

As a first-step, the user should check that the code for the subfunction and constraint values is
correct – for example, by computing the subfunctions at a point where the correct value of F ðxÞ is
known. However, care should be taken that the chosen point fully tests the evaluation of the
subfunctions. It is remarkable how often the values x ¼ 0 or x ¼ 1 are used to test function
evaluation procedures, and how often the special properties of these numbers make the test
meaningless.

Special care should be used in this test if computation of the subfunctions involves subsidiary data
communicated in COMMON storage. Although the first evaluation of the subfunctions may be
correct, subsequent calculations may be in error because some of the subsidiary data has accidently
been overwritten.

Gradient checking will be ineffective if the objective function uses information computed by the
constraints, since they are not necessarily computed prior to each function evaluation.

Errors in programming the subfunctions may be quite subtle in that the subfunction values are
‘almost’ correct. For example, a subfunction may not be accurate to full precision because of the
inaccurate calculation of a subsidiary quantity, or the limited accuracy of data upon which the
subfunction depends. A common error on machines where numerical calculations are usually
performed in double precision is to include even one single precision constant in the calculation of
the subfunction; since some compilers do not convert such constants to double precision, half the
correct figures may be lost by such a seemingly trivial error.

IFAIL ¼ 8

Not used by this routine.

IFAIL ¼ 9

An input parameter is invalid.

IFAIL ¼ overflow

If the printed output before the overflow error contains a warning about serious ill-conditioning in
the working set when adding the jth constraint, it may be possible to avoid the difficulty by
increasing the magnitude of the optional parameter Linear Feasibility Tolerance

(default value ¼
ffiffi
�

p
, where � is the machine precision; see Section 11.2) and/or the optional

parameter Nonlinear Feasibility Tolerance (default value ¼ �0:33 or
ffiffi
�

p
; see Section 11.2) and

E04 – Minimizing or Maximizing a Function E04USF=E04USA

[NP3546/20A] E04USF=E04USA.13



rerunning the program. If the message recurs even after this change then the offending linearly
dependent constraint (with index ‘j’) must be removed from the problem. If overflow occurs in one
of the user-supplied routines (e.g., if the nonlinear functions involve exponentials or singularities), it
may help to specify tighter bounds for some of the variables (i.e., reduce the gap between the
appropriate lj and uj).

7 Accuracy

If IFAIL ¼ 0 on exit, then the vector returned in the array X is an estimate of the solution to an accuracy

of approximately Optimality Tolerance (default value ¼ �0:8, where � is the machine precision; see
Section 11.2).

8 Further Comments

8.1 Description of the Printed Output

This section describes the intermediate printout and final printout produced by E04USF=E04USA. The
intermediate printout is a subset of the monitoring information produced by the routine at every iteration
(see Section 12). The level of printed output can be controlled by the user (see the description of the
optional parameter Major Print Level in Section 11.2). Note that the intermediate printout and final
printout are produced only if Major Print Level � 10 (the default for E04USF, by default no output is
produced by E04USA).

The following line of summary output (< 80 characters) is produced at every major iteration. In all cases,
the values of the quantities printed are those in effect on completion of the given iteration.

Maj is the major iteration count.

Mnr is the number of minor iterations required by the feasibility and optimality phases of
the QP subproblem. Generally, Mnr will be 1 in the later iterations, since theoretical
analysis predicts that the correct active set will be identified near the solution (see
Section 10 of the document for E04UCF=E04UCA).

Note that Mnr may be greater than the Minor Iteration Limit
(default value ¼ maxð50; 3ðnþ nL þ nNÞÞ; see Section 11.2) if some iterations
are required for the feasibility phase.

Step is the step �k taken along the computed search direction. On reasonably well-
behaved problems, the unit step (i.e., �k ¼ 1) will be taken as the solution is
approached.

Merit Function is the value of the augmented Lagrangian merit function (see (12) of the document
for E04UCF=E04UCA) at the current iterate. This function will decrease at each
iteration unless it was necessary to increase the penalty parameters (see Section 10.3
of the document for E04UCF=E04UCA). As the solution is approached, Merit
Function will converge to the value of the objective function at the solution.

If the QP subproblem does not have a feasible point (signified by I at the end of the
current output line) then the merit function is a large multiple of the constraint
violations, weighted by the penalty parameters. During a sequence of major
iterations with infeasible subproblems, the sequence of Merit Function values will
decrease monotonically until either a feasible subproblem is obtained or
E04USF=E04USA terminates with IFAIL ¼ 3 (no feasible point could be found
for the nonlinear constraints).

If there are no nonlinear constraints present (i.e., NCNLN ¼ 0) then this entry
contains Objective, the value of the objective function F ðxÞ. The objective
function will decrease monotonically to its optimal value when there are no
nonlinear constraints.

Norm Gz is kZTgFRk, the Euclidean norm of the projected gradient (see Section 10.2 of the
document for E04UCF=E04UCA). Norm Gz will be approximately zero in the
neighbourhood of a solution.

E04USF=E04USA NAG Fortran Library Manual

E04USF=E04USA.14 [NP3546/20A]



Violtn is the Euclidean norm of the residuals of constraints that are violated or in the
predicted active set (not printed if NCNLN is zero). Violtn will be approximately
zero in the neighbourhood of a solution.

Cond Hz is a lower bound on the condition number of the projected Hessian approximation

HZ (HZ ¼ ZTHFRZ ¼ RT
ZRZ ; see (6) and (11) of the document for

E04UCF=E04UCA). The larger this number, the more difficult the problem.

M is printed if the quasi-Newton update has been modified to ensure that the Hessian
approximation is positive-definite (see Section 10.4 of the document for
E04UCF=E04UCA).

I is printed if the QP subproblem has no feasible point.

C is printed if central differences have been used to compute the unspecified objective
and constraint gradients. If the value of Step is zero then the switch to central
differences was made because no lower point could be found in the line search. (In
this case, the QP subproblem is re-solved with the central difference gradient and
Jacobian.) If the value of Step is non-zero then central differences were computed
because Norm Gz and Violtn imply that x is close to a Kuhn–Tucker point (see
Section 10.1 of the document for E04UCF=E04UCA).

L is printed if the line search has produced a relative change in x greater than the
value defined by the optional parameter Step Limit (default value ¼ 2:0; see
Section 11.2). If this output occurs frequently during later iterations of the run,
Step Limit should be set to a larger value.

R is printed if the approximate Hessian has been refactorized. If the diagonal
condition estimator of R indicates that the approximate Hessian is badly conditioned
then the approximate Hessian is refactorized using column interchanges. If
necessary, R is modified so that its diagonal condition estimator is bounded.

The final printout includes a listing of the status of every variable and constraint.

The following describes the printout for each variable. A full stop (.) is printed for any numerical value
that is zero.

Varbl gives the name (V) and index j, for j ¼ 1; 2; . . . ; n of the variable.

State gives the state of the variable (FR if neither bound is in the working set, EQ if a
fixed variable, LL if on its lower bound, UL if on its upper bound, TF if temporarily
fixed at its current value). If Value lies outside the upper or lower bounds by more

than the Feasibility Tolerance (default value ¼
ffiffi
�

p
, where � is the machine

precision; see Section 11.2), State will be ++ or respectively.

A key is sometimes printed before State to give some additional information about
the state of a variable.

A Alternative optimum possible. The variable is active at one of its bounds, but
its Lagrange multiplier is essentially zero. This means that if the variable
were allowed to start moving away from its bound then there would be no
change to the objective function. The values of the other free variables might
change, giving a genuine alternative solution. However, if there are any
degenerate variables (labelled D), the actual change might prove to be zero,
since one of them could encounter a bound immediately. In either case the
values of the Lagrange multipliers might also change.

D Degenerate. The variable is free, but it is equal to (or very close to) one of
its bounds.

I Infeasible. The variable is currently violating one of its bounds by more than
the Feasibility Tolerance.

Value is the value of the variable at the final iteration.

E04 – Minimizing or Maximizing a Function E04USF=E04USA

[NP3546/20A] E04USF=E04USA.15



Lower Bound is the lower bound specified for the variable. None indicates that BLðjÞ � �bigbnd.

Upper Bound is the upper bound specified for the variable. None indicates that BUðjÞ � bigbnd.

Lagr Mult is the Lagrange multiplier for the associated bound. This will be zero if State is
FR unless BLðjÞ � �bigbnd and BUðjÞ � bigbnd, in which case the entry will be
blank. If x is optimal, the multiplier should be non-negative if State is LL and
non-positive if State is UL.

Slack is the difference between the variable Value and the nearer of its (finite) bounds
BLðjÞ and BUðjÞ. A blank entry indicates that the associated variable is not
bounded (i.e., BLðjÞ � �bigbnd and BUðjÞ � bigbnd).

The meaning of the printout for linear and nonlinear constraints is the same as that given above for
variables, with ‘variable’ replaced by ‘constraint’, BLðjÞ and BUðjÞ are replaced by BLðnþ jÞ and
BUðnþ jÞ respectively, and with the following changes in the heading:

L Con gives the name (L) and index j, for j ¼ 1; 2; . . . ; nL of the linear constraint.

N Con gives the name (N) and index (j� nL), for j ¼ nL þ 1; nL þ 2; . . . ; nL þ nN of the
nonlinear constraint.

Note that movement off a constraint (as opposed to a variable moving away from its bound) can be
interpreted as allowing the entry in the Slack column to become positive.

Numerical values are output with a fixed number of digits; they are not guaranteed to be accurate to this
precision.

9 Example

This is based on Problem 57 in Hock and Schittkowski (1981) and involves the minimization of the sum
of squares function

F ðxÞ ¼ 1
2

X44
i¼1

ðyi � fiðxÞÞ2;

where

fiðxÞ ¼ x1 þ ð0:49� x1Þe�x2ðai�8Þ

and

i yi ai i yi ai
1 0:49 8 23 0:41 22

2 0:49 8 24 0:40 22

3 0:48 10 25 0:42 24

4 0:47 10 26 0:40 24

5 0:48 10 27 0:40 24

6 0:47 10 28 0:41 26

7 0:46 12 29 0:40 26

8 0:46 12 30 0:41 26

9 0:45 12 31 0:41 28

10 0:43 12 32 0:40 28

11 0:45 14 33 0:40 30

12 0:43 14 34 0:40 30

13 0:43 14 35 0:38 30

14 0:44 16 36 0:41 32

15 0:43 16 37 0:40 32

16 0:43 16 38 0:40 34

17 0:46 18 39 0:41 36

18 0:45 18 40 0:38 36

19 0:42 20 41 0:40 38

20 0:42 20 42 0:40 38

21 0:43 20 43 0:39 40

22 0:41 22 44 0:39 42

E04USF=E04USA NAG Fortran Library Manual

E04USF=E04USA.16 [NP3546/20A]



subject to the bounds

x1 � 0:4
x2 � �4:0

to the general linear constraint

x1 þ x2 � 1:0

and to the nonlinear constraint

0:49x2 � x1x2 � 0:09:

The initial point, which is infeasible, is

x0 ¼ ð0:4; 0:0ÞT

and F ðx0Þ ¼ 0:002241.

The optimal solution (to five figures) is

x� ¼ ð0:41995; 1:28484ÞT ;

and F ðx�Þ ¼ 0:01423. The nonlinear constraint is active at the solution.

The document for E04UQF=E04UQA includes an example program to solve the same problem using some
of the optional parameters described in E04USF=E04USA.

9.1 Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read the
Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual,
the results produced may not be identical for all implementations.

Note: the following program illustrates the use of E04USF. An equivalent program illustrating the use of

E04USA is available with the supplied Library and is also available from the NAG web site.

* E04USF Example Program Text.
* Mark 20 Release. NAG Copyright 2001.
* .. Parameters ..

INTEGER NIN, NOUT
PARAMETER (NIN=5,NOUT=6)
INTEGER MMAX, NMAX, NCLMAX, NCNMAX
PARAMETER (MMAX=50,NMAX=10,NCLMAX=10,NCNMAX=10)
INTEGER LDA, LDCJ, LDFJ, LDR
PARAMETER (LDA=NCLMAX,LDCJ=NCNMAX,LDFJ=MMAX,LDR=NMAX)
INTEGER LIWORK, LWORK
PARAMETER (LIWORK=100,LWORK=1000)

* .. Local Scalars ..
real OBJF
INTEGER I, IFAIL, ITER, J, M, N, NCLIN, NCNLN

* .. Local Arrays ..
real A(LDA,NMAX), BL(NMAX+NCLMAX+NCNMAX),

+ BU(NMAX+NCLMAX+NCNMAX), C(NCNMAX),
+ CJAC(LDCJ,NMAX), CLAMDA(NMAX+NCLMAX+NCNMAX),
+ F(MMAX), FJAC(LDFJ,NMAX), R(LDR,NMAX), USER(1),
+ WORK(LWORK), X(NMAX), Y(MMAX)
INTEGER ISTATE(NMAX+NCLMAX+NCNMAX), IUSER(1),

+ IWORK(LIWORK)
* .. External Subroutines ..

EXTERNAL CONFUN, E04USF, OBJFUN
* .. Executable Statements ..

WRITE (NOUT,*) ’E04USF Example Program Results’
* Skip heading in data file

READ (NIN,*)
READ (NIN,*) M, N
READ (NIN,*) NCLIN, NCNLN
IF (M.LE.MMAX .AND. N.LE.NMAX .AND. NCLIN.LE.NCLMAX .AND.

+ NCNLN.LE.NCNMAX) THEN
*
* Read A, Y, BL, BU and X from data file
*

E04 – Minimizing or Maximizing a Function E04USF=E04USA

[NP3546/20A] E04USF=E04USA.17



IF (NCLIN.GT.0) READ (NIN,*) ((A(I,J),J=1,N),I=1,NCLIN)
READ (NIN,*) (Y(I),I=1,M)
READ (NIN,*) (BL(I),I=1,N+NCLIN+NCNLN)
READ (NIN,*) (BU(I),I=1,N+NCLIN+NCNLN)
READ (NIN,*) (X(I),I=1,N)

*
* Solve the problem
*

IFAIL = -1
*

CALL E04USF(M,N,NCLIN,NCNLN,LDA,LDCJ,LDFJ,LDR,A,BL,BU,Y,CONFUN,
+ OBJFUN,ITER,ISTATE,C,CJAC,F,FJAC,CLAMDA,OBJF,R,X,
+ IWORK,LIWORK,WORK,LWORK,IUSER,USER,IFAIL)

*
END IF
STOP
END
SUBROUTINE OBJFUN(MODE,M,N,LDFJ,NEEDFI,X,F,FJAC,NSTATE,IUSER,USER)

* Evaluates the vector f(x) and its first derivatives.
* .. Parameters ..

real PT49, ONE, EIGHT
PARAMETER (PT49=0.49e0,ONE=1.0e0,EIGHT=8.0e0)

* .. Scalar Arguments ..
INTEGER LDFJ, M, MODE, N, NEEDFI, NSTATE

* .. Array Arguments ..
real F(*), FJAC(LDFJ,*), USER(*), X(N)
INTEGER IUSER(*)

* .. Local Scalars ..
real AI, TEMP, X1, X2
INTEGER I
LOGICAL MODE02, MODE12

* .. Local Arrays ..
real A(44)

* .. Intrinsic Functions ..
INTRINSIC EXP

* .. Data statements ..
DATA A/8.0e0, 8.0e0, 10.0e0, 10.0e0, 10.0e0, 10.0e0,

+ 12.0e0, 12.0e0, 12.0e0, 12.0e0, 14.0e0, 14.0e0,
+ 14.0e0, 16.0e0, 16.0e0, 16.0e0, 18.0e0, 18.0e0,
+ 20.0e0, 20.0e0, 20.0e0, 22.0e0, 22.0e0, 22.0e0,
+ 24.0e0, 24.0e0, 24.0e0, 26.0e0, 26.0e0, 26.0e0,
+ 28.0e0, 28.0e0, 30.0e0, 30.0e0, 30.0e0, 32.0e0,
+ 32.0e0, 34.0e0, 36.0e0, 36.0e0, 38.0e0, 38.0e0,
+ 40.0e0, 42.0e0/

* .. Executable Statements ..
X1 = X(1)
X2 = X(2)
MODE02 = MODE .EQ. 0 .OR. MODE .EQ. 2
MODE12 = MODE .EQ. 1 .OR. MODE .EQ. 2
DO 20 I = 1, M

IF (NEEDFI.EQ.I) THEN
F(I) = X1 + (PT49-X1)*EXP(-X2*(A(I)-EIGHT))
RETURN

ELSE
AI = A(I)
TEMP = EXP(-X2*(AI-EIGHT))
IF (MODE02) F(I) = X1 + (PT49-X1)*TEMP
IF (MODE12) THEN

FJAC(I,1) = ONE - TEMP
FJAC(I,2) = -(PT49-X1)*(AI-EIGHT)*TEMP

END IF
END IF

20 CONTINUE
*

RETURN
END

*
SUBROUTINE CONFUN(MODE,NCNLN,N,LDCJ,NEEDC,X,C,CJAC,NSTATE,IUSER,

+ USER)
* Evaluates the vector c(x) and its first derivatives.
* .. Parameters ..

E04USF=E04USA NAG Fortran Library Manual

E04USF=E04USA.18 [NP3546/20A]



real ZERO, PT09, PT49
PARAMETER (ZERO=0.0e0,PT09=0.09e0,PT49=0.49e0)

* .. Scalar Arguments ..
INTEGER LDCJ, MODE, N, NCNLN, NSTATE

* .. Array Arguments ..
real C(*), CJAC(LDCJ,*), USER(*), X(N)
INTEGER IUSER(*), NEEDC(*)

* .. Local Scalars ..
INTEGER I, J

* .. Executable Statements ..
IF (NSTATE.EQ.1) THEN

* First call to CONFUN. Set all Jacobian elements to zero.
* Note that this will only work when ’Derivative Level = 3’
* (the default; see Section 11.2).

DO 40 J = 1, N
DO 20 I = 1, NCNLN

CJAC(I,J) = ZERO
20 CONTINUE
40 CONTINUE

END IF
*

IF (NEEDC(1).GT.0) THEN
IF (MODE.EQ.0 .OR. MODE.EQ.2) C(1) = -PT09 - X(1)*X(2) +

+ PT49*X(2)
IF (MODE.EQ.1 .OR. MODE.EQ.2) THEN

CJAC(1,1) = -X(2)
CJAC(1,2) = -X(1) + PT49

END IF
END IF

*
RETURN
END

9.2 Program Data

E04USF Example Program Data
44 2 :Values of M and N
1 1 :Values of NCLIN and NCNLN
1.0 1.0 :End of matrix A
0.49 0.49 0.48 0.47 0.48 0.47 0.46 0.46 0.45 0.43 0.45
0.43 0.43 0.44 0.43 0.43 0.46 0.45 0.42 0.42 0.43 0.41
0.41 0.40 0.42 0.40 0.40 0.41 0.40 0.41 0.41 0.40 0.40
0.40 0.38 0.41 0.40 0.40 0.41 0.38 0.40 0.40 0.39 0.39 :End of Y
0.4 -4.0 1.0 0.0 :End of BL
1.0E+25 1.0E+25 1.0E+25 1.0E+25 :End of BU
0.4 0.0 :End of X

9.3 Program Results

E04USF Example Program Results

*** E04USF
*** Start of NAG Library implementation details ***

Implementation title: Generalised Base Version
Precision: FORTRAN double precision

Product Code: FLBAS20D
Mark: 20A

*** End of NAG Library implementation details ***

Parameters
----------

Linear constraints..... 1 Variables.............. 2
Nonlinear constraints.. 1 Subfunctions........... 44

Infinite bound size.... 1.00E+20 COLD start.............
Infinite step size..... 1.00E+20 EPS (machine precision) 1.11E-16
Step limit............. 2.00E+00 Hessian................ NO

E04 – Minimizing or Maximizing a Function E04USF=E04USA

[NP3546/20A] E04USF=E04USA.19



Linear feasibility..... 1.05E-08 Crash tolerance........ 1.00E-02
Nonlinear feasibility.. 1.05E-08 Optimality tolerance... 3.26E-12
Line search tolerance.. 9.00E-01 Function precision..... 4.38E-15

Derivative level....... 3 Monitoring file........ -1
Verify level........... 0

Major iterations limit. 50 Major print level...... 10
Minor iterations limit. 50 Minor print level...... 0

J’J initial Hessian.... Reset frequency........ 2

Workspace provided is IWORK( 100), WORK( 1000).
To solve problem we need IWORK( 9), WORK( 306).

Verification of the constraint gradients.
-----------------------------------------

The constraint Jacobian seems to be ok.

The largest relative error was 1.91E-08 in constraint 1

Verification of the objective gradients.
----------------------------------------

The objective Jacobian seems to be ok.

The largest relative error was 1.06E-08 in subfunction 3

Maj Mnr Step Merit Function Norm Gz Violtn Cond Hz
0 2 0.0E+00 2.224070E-02 8.5E-02 3.6E-02 1.0E+00
1 1 1.0E+00 1.455402E-02 1.5E-03 9.8E-03 1.0E+00
2 1 1.0E+00 1.436491E-02 4.9E-03 7.2E-04 1.0E+00
3 1 1.0E+00 1.427013E-02 2.9E-03 9.2E-06 1.0E+00
4 1 1.0E+00 1.422989E-02 1.6E-04 3.6E-05 1.0E+00
5 1 1.0E+00 1.422983E-02 5.4E-07 6.4E-08 1.0E+00
6 1 1.0E+00 1.422983E-02 3.4E-09 9.8E-13 1.0E+00

Exit from NP problem after 6 major iterations,
8 minor iterations.

Varbl State Value Lower Bound Upper Bound Lagr Mult Slack

V 1 FR 0.419953 0.400000 None . 1.9953E-02
V 2 FR 1.28485 -4.00000 None . 5.285

L Con State Value Lower Bound Upper Bound Lagr Mult Slack

L 1 FR 1.70480 1.00000 None . 0.7048

N Con State Value Lower Bound Upper Bound Lagr Mult Slack

N 1 LL -9.768135E-13 . None 3.3358E-02 -9.7681E-13

Exit E04USF - Optimal solution found.

Final objective value = 0.1422983E-01

E04USF=E04USA NAG Fortran Library Manual

E04USF=E04USA.20 [NP3546/20A]



Note: the remainder of this document is intended for more advanced users. Section 11 describes the optional

parameters which may be set by calls to E04UQF and/or E04URF. Section 12 describes the quantites which

can be requested to monitor the course of the computation.

10 Algorithmic Details

E04USF=E04USA implements a sequential quadratic programming (SQP) method incorporating an
augmented Lagrangian merit function and a BFGS (Broyden–Fletcher–Goldfarb–Shanno) quasi-Newton
approximation to the Hessian of the Lagrangian, and is based on E04UCF=E04UCA. The documents for
E04UCF=E04UCA and E04NCF=E04NCA should be consulted for details of the method.

11 Optional Parameters

Several optional parameters in E04USF=E04USA define choices in the problem specification or the
algorithm logic. In order to reduce the number of formal parameters of E04USF=E04USA these optional
parameters have associated default values that are appropriate for most problems. Therefore the user need
only specify those optional parameters whose values are to be different from their default values.

The remainder of this section can be skipped by users who wish to use the default values for all optional
parameters. A complete list of optional parameters and their default values is given in Section 11.1.

Optional parameters may be specified by calling one, or both, of E04UQF=E04UQA and
E04URF=E04URA prior to a call to E04USF=E04USA.

E04UQF=E04UQA reads options from an external options file, with Begin and End as the first and last
lines respectively and each intermediate line defining a single optional parameter. For example,

Begin
Print level = 1

End

The call

CALL E04UQF (IOPTNS, INFORM)

can then be used to read the file on unit IOPTNS. INFORM will be zero on successful exit.
E04UQF=E04UQA should be consulted for a full description of this method of supplying optional
parameters.

E04URF=E04URA can be called to supply options directly, one call being necessary for each optional
parameter. For example,

CALL E04URF (’Print level = 1’)

E04URF=E04URA should be consulted for a full description of this method of supplying optional
parameters.

All optional parameters not specified by the user are set to their default values. Optional parameters
specified by the user are unaltered by E04USF=E04USA (unless they define invalid values) and so remain
in effect for subsequent calls to E04USF=E04USA, unless altered by the user.

11.1 Optional parameter checklist and default values

For easy reference, the following list shows all the valid keywords and their default values. The symbol �
represents the machine precision (see X02AJF).

Optional Parameters Default Values

Central Difference Interval Computed automatically
Cold/Warm Start Cold Start
Crash Tolerance 0.01
Defaults
Derivative Level 3
Difference Interval Computed automatically
Feasibility Tolerance

ffiffi
�

p

Function Precision �0:9

E04 – Minimizing or Maximizing a Function E04USF=E04USA

[NP3546/20A] E04USF=E04USA.21



Hessian No
Infinite Bound Size 1020

Infinite Step Size 1020

JTJ/Unit Initial Hessian JTJ Initial Hessian
Line Search Tolerance 0.9
Linear Feasibility Tolerance

ffiffi
�

p

List/Nolist List (Nolist for E04USA)
Major Iteration Limit maxð50; 3ðnþ nLÞ þ 10nNÞ
Major Print Level 10 (0 for E04USA)
Minor Iteration Limit maxð50; 3ðnþ nL þ nNÞÞ
Minor Print Level 0
Monitoring File �1
Nonlinear Feasibility Tolerance �0:33 or

ffiffi
�

p

Optimality Tolerance �0:8R

Reset Frequency 2
Step Limit 2.0
Start Objective Check 1
Start Constraint Check 1
Stop Objective Check n
Stop Constraint Check n
Verify Level 0

11.2 Description of the optional parameters

The following list (in alphabetical order) gives the valid options. For each option, we give the keyword,
any essential optional qualifiers, the default value, and the definition. The minimum abbreviation of each
keyword is underlined. If no characters of an optional qualifier are underlined, the qualifier may be
omitted. The letter a denotes a phrase (character string) that qualifies an option. The letters i and r denote
INTEGER and real values required with certain options. The number � is a generic notation for machine
precision (see X02AJF), and �R denotes the relative precision of the objective function (the optional
parameter Function Precision; see below). Further details of other quantities not explicitly defined in this
section may be found by consulting the document for E04UCF=E04UCA.

Central Difference Interval r Default values are computed

If the algorithm switches to central differences because the forward-difference approximation is not
sufficiently accurate, the value of r is used as the difference interval for every element of x. The switch to
central differences is indicated by C at the end of each line of intermediate printout produced by the major
iterations (see Section 8.1). The use of finite differences is discussed further below under the optional
parameter Difference Interval.

Cold Start Default ¼ Cold Start
Warm Start

This option controls the specification of the initial working set in both the procedure for finding a feasible
point for the linear constraints and bounds, and in the first QP subproblem thereafter. With a Cold Start,
the first working set is chosen by E04USF=E04USA based on the values of the variables and constraints at
the initial point. Broadly speaking, the initial working set will include equality constraints and bounds or
inequality constraints that violate or ‘nearly’ satisfy their bounds (to within Crash Tolerance; see below).

With a Warm Start, the user must set the ISTATE array and define CLAMDA and R as discussed in
Section 5. ISTATE values associated with bounds and linear constraints determine the initial working set
of the procedure to find a feasible point with respect to the bounds and linear constraints. ISTATE values
associated with nonlinear constraints determine the initial working set of the first QP subproblem after such
a feasible point has been found. E04USF=E04USA will override the user’s specification of ISTATE if
necessary, so that a poor choice of the working set will not cause a fatal error. For instance, any elements
of ISTATE which are set to �2, �1 or 4 will be reset to zero, as will any elements which are set to 3 when
the corresponding elements of BL and BU are not equal. A warm start will be advantageous if a good
estimate of the initial working set is available – for example, when E04USF=E04USA is called repeatedly
to solve related problems.

E04USF=E04USA NAG Fortran Library Manual

E04USF=E04USA.22 [NP3546/20A]



Crash Tolerance r Default ¼ 0:01

This value is used in conjunction with the optional parameter Cold Start (the default value) when
E04USF=E04USA selects an initial working set. If 0 � r � 1, the initial working set will include (if
possible) bounds or general inequality constraints that lie within r of their bounds. In particular, a

constraint of the form aTj x � l will be included in the initial working set if jaTj x� lj � rð1þ jljÞ. If r < 0

or r > 1, the default value is used.

Defaults

This special keyword may be used to reset all optional parameters to their default values.

Derivative Level i Default ¼ 3

This parameter indicates which derivatives are provided by the user in subroutines OBJFUN and
CONFUN. The possible choices for i are the following.

i Meaning

3 All elements of the objective Jacobian and the constraint Jacobian are provided by the user.
2 All elements of the constraint Jacobian are provided, but some elements of the objective Jacobian are

not specified by the user.
1 All elements of the objective Jacobian are provided, but some elements of the constraint Jacobian are

not specified by the user.
0 Some elements of both the objective Jacobian and the constraint Jacobian are not specified by the user.

The value i ¼ 3 should be used whenever possible, since E04USF=E04USA is more reliable (and will
usually be more efficient) when all derivatives are exact.

If i ¼ 0 or 2, E04USF=E04USA will approximate unspecified elements of the objective Jacobian, using
finite differences. The computation of finite difference approximations usually increases the total run-time,
since a call to OBJFUN is required for each unspecified element. Furthermore, less accuracy can be
attained in the solution (see Chapter 8 of Gill et al. (1981), for a discussion of limiting accuracy).

If i ¼ 0 or 1, E04USF=E04USA will approximate unspecified elements of the constraint Jacobian. One
call to CONFUN is needed for each variable for which partial derivatives are not available. For example,
if the constraint Jacobian has the form

� � � �
� ? ? �
� � ? �
� � � �

0
BB@

1
CCA

where ‘�’ indicates an element provided by the user and ‘?’ indicates an unspecified element,
E04USF=E04USA will call CONFUN twice: once to estimate the missing element in column 2, and again
to estimate the two missing elements in column 3. (Since columns 1 and 4 are known, they require no
calls to CONFUN.)

At times, central differences are used rather than forward differences, in which case twice as many calls to
OBJFUN and CONFUN are needed. (The switch to central differences is not under the user’s control.)

If i < 0 or i > 3, the default value is used.

Difference Interval r Default values are computed

This option defines an interval used to estimate derivatives by finite differences in the following
circumstances:

(a) For verifying the objective and/or constraint gradients (see the description of Verify, below).

(b) For estimating unspecified elements of the objective and/or constraint Jacobian matrix.

E04 – Minimizing or Maximizing a Function E04USF=E04USA

[NP3546/20A] E04USF=E04USA.23



In general, a derivative with respect to the jth variable is approximated using the interval �j, where

�j ¼ rð1þ jx̂xjjÞ, with x̂x the first point feasible with respect to the bounds and linear constraints. If the

functions are well scaled, the resulting derivative approximation should be accurate to OðrÞ. See Gill et al.
(1981) for a discussion of the accuracy in finite difference approximations.

If a difference interval is not specified by the user, a finite difference interval will be computed
automatically for each variable by a procedure that requires up to six calls of CONFUN and OBJFUN for
each element. This option is recommended if the function is badly scaled or the user wishes to have
E04USF=E04USA determine constant elements in the objective and constraint gradients (see the
descriptions of CONFUN and OBJFUN in Section 5).

Feasibility Tolerance r Default ¼
ffiffi
�

p

The scalar r defines the maximum acceptable absolute violations in linear and nonlinear constraints at a
‘feasible’ point; i.e., a constraint is considered satisfied if its violation does not exceed r. If r < � or
r � 1, the default value is used. Using this keyword sets both optional parameters Linear Feasibility
Tolerance and Nonlinear Feasibility Tolerance to r, if � � r < 1. (Additional details are given below
under the descriptions of these parameters.)

Function Precision r Default ¼ �0:9

This parameter defines �R, which is intended to be a measure of the accuracy with which the problem
functions F ðxÞ and cðxÞ can be computed. If r < � or r � 1, the default value is used.

The value of �R should reflect the relative precision of 1þ jF ðxÞj; i.e., �R acts as a relative precision when
jF j is large, and as an absolute precision when jF j is small. For example, if F ðxÞ is typically of order

1000 and the first six significant digits are known to be correct, an appropriate value for �R would be 10�6.

In contrast, if F ðxÞ is typically of order 10�4 and the first six significant digits are known to be correct, an

appropriate value for �R would be 10�10. The choice of �R can be quite complicated for badly scaled
problems; see Chapter 8 of Gill et al. (1981) for a discussion of scaling techniques. The default value is
appropriate for most simple functions that are computed with full accuracy. However, when the accuracy
of the computed function values is known to be significantly worse than full precision, the value of �R
should be large enough so that E04USF=E04USA will not attempt to distinguish between function values
that differ by less than the error inherent in the calculation.

Hessian Default ¼ No
Hessian

This option controls the contents of the upper triangular matrix R (see Section 5). E04USF=E04USA
works exclusively with the transformed and re-ordered Hessian HQ, and hence extra computation is

required to form the Hessian itself. If Hessian ¼ No, R contains the Cholesky factor of the transformed
and re-ordered Hessian. If Hessian ¼ Yes, the Cholesky factor of the approximate Hessian itself is formed
and stored in R. The user should select Hessian ¼ Yes if a Warm Start will be used for the next call to
E04USF=E04USA.

Infinite Bound Size r Default ¼ 1020

If r > 0, r defines the ‘infinite’ bound bigbnd in the definition of the problem constraints. Any upper
bound greater than or equal to bigbnd will be regarded as plus infinity (and similarly any lower bound less
than or equal to �bigbnd will be regarded as minus infinity). If r � 0, the default value is used.

Infinite Step Size r Default ¼ maxðbigbnd; 1020Þ
If r > 0, r specifies the magnitude of the change in variables that is treated as a step to an unbounded
solution. If the change in x during an iteration would exceed the value of r, the objective function is
considered to be unbounded below in the feasible region. If r � 0, the default value is used.

Iteration Limit i Default ¼ maxð50; 3ðnþ nLÞ þ 10nNÞ
See Major Iteration Limit below.

E04USF=E04USA NAG Fortran Library Manual

E04USF=E04USA.24 [NP3546/20A]



JTJ Initial Hessian Default ¼ JTJ Initial Hessian
Unit Initial Hessian

This option controls the initial value of the upper triangular matrix R. If J denotes the objective Jacobian

matrix rfðxÞ, then JTJ is often a good approximation to the objective Hessian matrix r2F ðxÞ (see also
Reset Frequency, below).

Line Search Tolerance r Default ¼ 0:9

The value r (0 � r < 1) controls the accuracy with which the step � taken during each iteration
approximates a minimum of the merit function along the search direction (the smaller the value of r, the
more accurate the line search). The default value r ¼ 0:9 requests an inaccurate search, and is appropriate
for most problems, particularly those with any nonlinear constraints.

If there are no nonlinear constraints, a more accurate search may be appropriate when it is desirable to
reduce the number of major iterations – for example, if the objective function is cheap to evaluate, or if a
substantial number of derivatives are unspecified. If r < 0 or r � 1, the default value is used.

Linear Feasibility Tolerance r1 Default ¼
ffiffi
�

p

Nonlinear Feasibility Tolerance r2 Default ¼ �0:33 or
ffiffi
�

p
(see below)

The default value of r2 is �0:33 if Derivative Level = 0 or 1, and
ffiffi
�

p
otherwise.

The scalars r1 and r2 define the maximum acceptable absolute violations in linear and nonlinear
constraints at a ‘feasible’ point; i.e., a linear constraint is considered satisfied if its violation does not
exceed r1, and similarly for a nonlinear constraint and r2. If rm < � or rm � 1, the default value is used,
for m ¼ 1; 2.

On entry to E04USF=E04USA, an iterative procedure is executed in order to find a point that satisfies the
linear constraints and bounds on the variables to within the tolerance r1. All subsequent iterates will
satisfy the linear constraints to within the same tolerance (unless r1 is comparable to the finite difference
interval).

For nonlinear constraints, the feasibility tolerance r2 defines the largest constraint violation that is
acceptable at an optimal point. Since nonlinear constraints are generally not satisfied until the final iterate,
the value of Nonlinear Feasibility Tolerance acts as a partial termination criterion for the iterative
sequence generated by E04USF=E04USA (see also Optimality Tolerance, below).

These tolerances should reflect the precision of the corresponding constraints. For example, if the variables
and the coefficients in the linear constraints are of order unity, and the latter are correct to about 6 decimal

digits, it would be appropriate to specify r1 as 10�6.

List Default for E04USF ¼ List
Nolist Default for E04USA ¼ Nolist

Normally each optional parameter specification is printed as it is supplied. Nolist may be used to suppress
the printing and List may be used to restore printing.

Major Iteration Limit i Default ¼ maxð50; 3ðnþ nLÞ þ 10nNÞ
Iteration Limit
Iters
Itns

The value of i specifies the maximum number of major iterations allowed before termination. Setting
i ¼ 0 and Major Print Level > 0 means that the workspace needed will be computed and printed, but no
iterations will be performed. If i < 0, the default value is used.

Major Print Level i Default for E04USF ¼ 10
Print Level Default for E04USA ¼ 0

The value of i controls the amount of printout produced by the major iterations of E04USF=E04USA, as
indicated below. A detailed description of the printed output is given in Section 8.1 (summary output at
each major iteration and the final solution) and Section 12 (monitoring information at each major iteration).
(See also Minor Print Level, below.)

E04 – Minimizing or Maximizing a Function E04USF=E04USA

[NP3546/20A] E04USF=E04USA.25



The following printout is sent to the current advisory message unit (as defined by X04ABF):

i Output

0 No output.
1 The final solution only.
5 One line of summary output (< 80 characters; see Section 8.1) for each major iteration (no printout

of the final solution).
� 10 The final solution and one line of summary output for each major iteration.

The following printout is sent to the logical unit number defined by the optional parameter Monitoring
File (see below):

i Output

< 5 No output.
� 5 One long line of output (> 80 characters; see Section 12) for each major iteration (no printout of

the final solution).
� 20 At each major iteration, the objective function, the Euclidean norm of the nonlinear constraint

violations, the values of the nonlinear constraints (the vector c), the values of the linear constraints
(the vector ALx), and the current values of the variables (the vector x).

� 30 At each major iteration, the diagonal elements of the matrix T associated with the TQ factorization
(see (5) of the document for E04UCF=E04UCA) of the QP working set, and the diagonal elements
of R, the triangular factor of the transformed and re-ordered Hessian (see (6) of the document for
E04UCF=E04UCA).

If Major Print Level � 5 and the unit number defined by Monitoring File is the same as that defined by
X04ABF, then the summary output for each major iteration is suppressed.

Minor Iteration Limit i Default ¼ maxð50; 3ðnþ nL þ nNÞÞ
The value of i specifies the maximum number of iterations for finding a feasible point with respect to the
bounds and linear constraints (if any). The value of i also specifies the maximum number of minor
iterations for the optimality phase of each QP subproblem. If i � 0, the default value is used.

Minor Print Level i Default ¼ 0

The value of i controls the amount of printout produced by the minor iterations of E04USF=E04USA (i.e.,
the iterations of the quadratic programming algorithm), as indicated below. A detailed description of the
printed output is given in Section 8.1 (summary output at each minor iteration and the final QP solution)
and Section 12 (monitoring information at each minor iteration). (See also Major Print Level, above.)

The following printout is sent to the current advisory message unit (as defined by X04ABF):

i Output

0 No output.
1 The final QP solution only.
5 One line of summary output (< 80 characters; see Section 8.1) for each minor iteration (no printout

of the final QP solution).
� 10 The final QP solution and one line of summary output for each minor iteration.

The following printout is sent to the logical unit number defined by the optional parameter Monitoring
File (see below):

i Output

< 5 No output.
� 5 One long line of output (> 80 characters; see Section 12) for each minor iteration (no printout of

the final QP solution).
� 20 At each minor iteration, the current estimates of the QP multipliers, the current estimate of the QP

search direction, the QP constraint values, and the status of each QP constraint.
� 30 At each minor iteration, the diagonal elements of the matrix T associated with the TQ factorization

(see (5) of the document for E04UCF=E04UCA) of the QP working set, and the diagonal elements
of the Cholesky factor R of the transformed Hessian (see (6) of the document for
E04UCF=E04UCA).

E04USF=E04USA NAG Fortran Library Manual

E04USF=E04USA.26 [NP3546/20A]



If Minor Print Level � 5 and the unit number defined by Monitoring File is the same as that defined by
X04ABF, then the summary output for each minor iteration is suppressed.

Monitoring File i Default ¼ �1

If i � 0 and Major Print Level � 5 (see above) or i � 0 and Minor Print Level � 5 (see above),
monitoring information produced by E04USF=E04USA at every iteration is sent to a file with logical unit
number i. If i < 0 and/or Major Print Level < 5 and Minor Print Level < 5, no monitoring information
is produced.

Nonlinear Feasibility Tolerance r Default ¼ �0:33 or
ffiffi
�

p

See Linear Feasibility Tolerance above.

Optimality Tolerance r Default ¼ �0:8R

The parameter r (�R � r < 1) specifies the accuracy to which the user wishes the final iterate to
approximate a solution of the problem. Broadly speaking, r indicates the number of correct figures desired

in the objective function at the solution. For example, if r is 10�6 and E04USF=E04USA terminates
successfully, the final value of F should have approximately six correct figures. If r < �R or r � 1, the
default value is used.

E04USF=E04USA will terminate successfully if the iterative sequence of x-values is judged to have
converged and the final point satisfies the first-order Kuhn–Tucker conditions (see Section 10.1 of the
document for E04UCF=E04UCA). The sequence of iterates is considered to have converged at x if

�kpk �
ffiffiffi
r

p
ð1þ kxkÞ; ð2Þ

where p is the search direction and � the step length. An iterate is considered to satisfy the first-order
conditions for a minimum if

kZTgFRk �
ffiffiffi
r

p
ð1þmaxð1þ jF ðxÞj; kgFRkÞÞ ð3Þ

and

jresjj � ftol for all j; ð4Þ

where ZTgFR is the projected gradient, gFR is the gradient of F ðxÞ with respect to the free variables, resj
is the violation of the jth active nonlinear constraint, and ftol is the Nonlinear Feasibility Tolerance.

Print Level

See Major Print Level above.

Reset Frequency i Default ¼ 2

If i > 0, this parameter allows the user to reset the approximate Hessian matrix to JTJ every i iterations,
where J is the objective Jacobian matrix rfðxÞ (see also JTJ Initial Hessian, above).

At any point where there are no nonlinear constraints active and the values of f are small in magnitude

compared to the norm of J , JTJ will be a good approximation to the objective Hessian r2F ðxÞ. Under
these circumstances, frequent resetting can significantly improve the convergence rate of
E04USF=E04USA.

Resetting is suppressed at any iteration during which there are nonlinear constraints active.

If i � 0, the default value is used.

Start Objective Check At Variable i1 Default ¼ 1
Stop Objective Check At Variable i2 Default ¼ n
Start Constraint Check At Variable Default ¼ 1
Stop Constraint Check At Variable Default ¼ n

These keywords take effect only if Verify Level > 0 (see below). They may be used to control the
verification of Jacobian elements computed by subroutines OBJFUN and CONFUN. For example, if the

E04 – Minimizing or Maximizing a Function E04USF=E04USA

[NP3546/20A] E04USF=E04USA.27



first 30 columns of the objective Jacobian appeared to be correct in an earlier run, so that only column 31
remains questionable, it is reasonable to specify Start Objective Check At Variable 31. If the first 30
variables appear linearly in the subfunctions, so that the corresponding Jacobian elements are constant, the
above choice would also be appropriate.

If i2m�1 � 0 or i2m�1 > minðn; i2mÞ, the default value is used, for m ¼ 1; 2. If i2m � 0 or i2m > n, the
default value is used, for m ¼ 1; 2.

Step Limit r Default ¼ 2:0

If r > 0; r specifies the maximum change in variables at the first step of the line search. In some cases,

such as F ðxÞ ¼ aebx or F ðxÞ ¼ axb, even a moderate change in the elements of x can lead to floating-
point overflow. The parameter r is therefore used to encourage evaluation of the problem functions at
meaningful points. Given any major iterate x, the first point ~xx at which F and c are evaluated during the
line search is restricted so that

k~xx� xk2 � rð1þ kxk2Þ:

The line search may go on and evaluate F and c at points further from x if this will result in a lower value
of the merit function (indicated by L at the end of each line of output produced by the major iterations; see
Section 8.1). If L is printed for most of the iterations, r should be set to a larger value.

Wherever possible, upper and lower bounds on x should be used to prevent evaluation of nonlinear
functions at wild values. The default value Step Limit ¼ 2:0 should not affect progress on well-behaved
functions, but values such as 0.1 or 0.01 may be helpful when rapidly varying functions are present. If a
small value of Step Limit is selected, a good starting point may be required. An important application is
to the class of nonlinear least-squares problems. If r � 0, the default value is used.

Stop Constraint Check At Variable

See Start Constraint Check At Variable above.

Stop Objective Check At Variable

See Start Objective Check At Variable above.

Unit Initial Hessian

See JTJ Initial Hessian above.

Verify Level i Default ¼ 0
Verify Objective Gradients
Verify Constraint Gradients
Verify
Verify Gradients

These keywords refer to finite difference checks on the gradient elements computed by the user-provided
subroutines OBJFUN and CONFUN. (Unspecified gradient elements are not checked.) The possible
choices for i are the following:

i Meaning

�1 No checks are performed.
0 Only a ‘cheap’ test will be performed, requiring one call to OBJFUN.
1 Individual gradient elements will also be checked using a reliable (but more expensive) test.

For example, the nonlinear objective gradient (if any) will be verified if either Verify Objective Gradients
or Verify Level 1 is specified. Similarly, the objective and the constraint gradients will be verified if
Verify Yes or Verify Level 3 or Verify is specified.

If i ¼ �1, no checking will be performed.

If 0 � i � 3, gradients will be verified at the first point that satisfies the linear constraints and bounds. If
i ¼ 0, only a ‘cheap’ test will be performed, requiring one call to OBJFUN and (if appropriate) one call to
CONFUN. If 1 � i � 3, a more reliable (but more expensive) check will be made on individual gradient

E04USF=E04USA NAG Fortran Library Manual

E04USF=E04USA.28 [NP3546/20A]



elements, within the ranges specified by the Start and Stop keywords described above. A result of the
form OK or BAD? is printed by E04USF=E04USA to indicate whether or not each element appears to be
correct.

If 10 � i � 13, the action is the same as for i� 10, except that it will take place at the user-specified
initial value of x.

If i < �1 or 4 � i � 9 or i > 13, the default value is used.

We suggest that Verify Level ¼ 3 be used whenever a new function routine is being developed.

Warm Start

See Cold Start above.

12 Description of Monitoring Information

This section describes the long line of output (> 80 characters) which forms part of the monitoring
information produced by E04USF=E04USA. (See also the description of the optional parameters Major
Print Level, Minor Print Level and Monitoring File in Section 11.2.) The level of printed output can be
controlled by the user.

When Major Print Level � 5 and Monitoring File � 0, the following line of output is produced at every
major iteration of E04USF=E04USA on the unit number specified by Monitoring File. In all cases, the
values of the quantities printed are those in effect on completion of the given iteration.

Maj is the major iteration count.

Mnr is the number of minor iterations required by the feasibility and optimality phases of
the QP subproblem. Generally, Mnr will be 1 in the later iterations, since theoretical
analysis predicts that the correct active set will be identified near the solution (see
Section 10 of the document for E04UCF=E04UCA).

Note that Mnr may be greater than the Minor Iteration Limit
(default value ¼ maxð50; 3ðnþ nL þ nNÞÞ; see Section 11.2) if some iterations
are required for the feasibility phase.

Step is the step �k taken along the computed search direction. On reasonably well-
behaved problems, the unit step (i.e., �k ¼ 1) will be taken as the solution is
approached.

Nfun is the cumulative number of evaluations of the objective function needed for the line
search. Evaluations needed for the estimation of the gradients by finite differences
are not included. Nfun is printed as a guide to the amount of work required for the
line search.

Merit Function is the value of the augmented Lagrangian merit function (see (12) of the document
for E04UCF=E04UCA) at the current iterate. This function will decrease at each
iteration unless it was necessary to increase the penalty parameters (see Section 10.3
of the document for E04UCF=E04UCA). As the solution is approached, Merit
Function will converge to the value of the objective function at the solution.

If the QP subproblem does not have a feasible point (signified by I at the end of the
current output line) then the merit function is a large multiple of the constraint
violations, weighted by the penalty parameters. During a sequence of major
iterations with infeasible subproblems, the sequence of Merit Function values will
decrease monotonically until either a feasible subproblem is obtained or
E04USF=E04USA terminates with IFAIL ¼ 3 (no feasible point could be found
for the nonlinear constraints).

If there are no nonlinear constraints present (i.e., NCNLN ¼ 0) then this entry
contains Objective, the value of the objective function F ðxÞ. The objective
function will decrease monotonically to its optimal value when there are no
nonlinear constraints.

E04 – Minimizing or Maximizing a Function E04USF=E04USA

[NP3546/20A] E04USF=E04USA.29



Norm Gz is kZTgFRk, the Euclidean norm of the projected gradient (see Section 10.2 of the
document for E04UCF=E04UCA). Norm Gz will be approximately zero in the
neighbourhood of a solution.

Violtn is the Euclidean norm of the residuals of constraints that are violated or in the
predicted active set (not printed if NCNLN is zero). Violtn will be approximately
zero in the neighbourhood of a solution.

Nz is the number of columns of Z (see Section 10.2 of the document for
E04UCF=E04UCA). The value of Nz is the number of variables minus the number
of constraints in the predicted active set; i.e., Nz ¼ n� ðBndþ Linþ NlnÞ.

Bnd is the number of simple bound constraints in the current working set.

Lin is the number of general linear constraints in the current working set.

Nln is the number of nonlinear constraints in the predicted active set (not printed if
NCNLN is zero).

Penalty is the Euclidean norm of the vector of penalty parameters used in the augmented
Lagrangian merit function (not printed if NCNLN is zero).

Cond H is a lower bound on the condition number of the Hessian approximation H.

Cond Hz is a lower bound on the condition number of the projected Hessian approximation

HZ (HZ ¼ ZTHFRZ ¼ RT
ZRZ ; see (6) and (11) of the document for

E04UCF=E04UCA). The larger this number, the more difficult the problem.

Cond T is a lower bound on the condition number of the matrix of predicted active
constraints.

Conv is a three-letter indication of the status of the three convergence tests (2)–(4) defined
in the description of the optional parameter Optimality Tolerance in Section 11.2.
Each letter is T if the test is satisfied and F otherwise. The three tests indicate
whether: (a) the sequence of iterates has converged;

(b) the projected gradient (Norm Gz) is sufficiently small; and

(c) the norm of the residuals of constraints in the predicted active set (Violtn) is
small enough.

If any of these indicators is F when E04USF=E04USA terminates with IFAIL ¼ 0,
the user should check the solution carefully.

M is printed if the quasi-Newton update has been modified to ensure that the Hessian
approximation is positive-definite (see Section 10.4 of the document for
E04UCF=E04UCA).

I is printed if the QP subproblem has no feasible point.

C is printed if central differences have been used to compute the unspecified objective
and constraint gradients. If the value of Step is zero then the switch to central
differences was made because no lower point could be found in the line search. (In
this case, the QP subproblem is re-solved with the central difference gradient and
Jacobian.) If the value of Step is non-zero then central differences were computed
because Norm Gz and Violtn imply that x is close to a Kuhn–Tucker point (see
Section 10.1 of the document for E04UCF=E04UCA).

L is printed if the line search has produced a relative change in x greater than the
value defined by the optional parameter Step Limit (default value ¼ 2:0; see
Section 11.2). If this output occurs frequently during later iterations of the run,
Step Limit should be set to a larger value.

R is printed if the approximate Hessian has been refactorized. If the diagonal
condition estimator of R indicates that the approximate Hessian is badly conditioned

E04USF=E04USA NAG Fortran Library Manual

E04USF=E04USA.30 [NP3546/20A]



then the approximate Hessian is refactorized using column interchanges. If
necessary, R is modified so that its diagonal condition estimator is bounded.

E04 – Minimizing or Maximizing a Function E04USF=E04USA

[NP3546/20A] E04USF=E04USA.31 (last)


	E04USF
	1 Purpose
	2 Specifications
	2.1 Specification for E04USF
	2.2 Specification for E04USA

	3 Description
	4 References
	5 Parameters
	M
	N
	NCLIN
	NCNLN
	LDA
	LDCJ
	LDFJ
	LDR
	A
	BL
	BU
	Y
	CONFUN
	MODE
	NCNLN
	N
	LDCJ
	NEEDC
	X
	C
	CJAC
	NSTATE
	IUSER
	USER

	OBJFUN
	MODE
	M
	N
	LDFJ
	NEEDFI
	X
	F
	FJAC
	NSTATE
	IUSER
	USER

	ITER
	ISTATE
	C
	CJAC
	F
	FJAC
	CLAMDA
	OBJF
	R
	X
	IWORK
	LIWORK
	WORK
	LWORK
	IUSER
	USER
	IFAIL
	LWSAV
	IWSAV
	RWSAV
	IFAIL_E04USA

	6 Error Indicators and Warnings
	IFAIL < 0
	IFAIL = 1
	IFAIL = 2
	IFAIL = 3
	IFAIL = 4
	IFAIL = 5
	IFAIL = 6
	IFAIL = 7
	IFAIL = 8
	IFAIL = 9
	IFAIL = flow

	7 Accuracy
	8 Further Comments
	8.1 Description of the Printed Output

	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	10 Algorithmic Details
	11 Optional Parameters
	11.1 Optional parameter checklist and default values
	11.2 Description of the optional parameters
	[Ce]ntral Difference Interval
	[Col]d Start
	[W]arm Start
	[Cr]ash Tolerance
	[Defaults]
	[Der]ivative Level
	[Diff]erence Interval
	[Fe]asibility Tolerance
	[Fu]nction Precision
	[H]essian
	[H]essian
	[In]finite [B]ound Size
	[In]finite [S]tep Size
	[J]TJ Initial Hessian
	[Un]it Initial Hessian
	[Line] Search Tolerance
	[Linear] [F]easibility Tolerance
	[Non]linear [F]easibility Tolerance
	[List]
	[Nolist]
	[Ma]jor [It]eration Limit
	[Itera]tion Limit
	[Iter]s
	[Itns]
	[Ma]jor [P]rint Level
	[Print] Level
	[Min]or [Itera]tion Limit
	[Min]or [P]rint Level
	[Mo]nitoring File
	[Op]timality Tolerance
	[Re]set Frequency
	[Sta]rt [O]bjective Check At Variable
	[Sto]p [O]bjective Check At Variable
	[Sta]rt [C]onstraint Check At Variable
	[Sto]p [C]onstraint Check At Variable
	[St]ep Limit
	[Un]it Initial Hessian
	[Ve]rify [L]evel
	[Ve]rify [G]radients


	12 Description of Monitoring Information

	NAG Library Manual, Mark 21
	Foreword
	Introduction
	Essential Introduction - essential reading for all users
	NAG Fortran Library specific documentation
	Mark 21 News

	NAG SMP Library specific documentation
	SMP Introduction - essential reading for all SMP users
	Mark 21 News - SMP Library
	SMP Tuned and Enhanced Routines

	Thread Safety
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements

	Indexes
	Implementation-specific Information
	A00 - Library Identification
	Chapter Introduction

	A02 - Complex Arithmetic
	Chapter Introduction

	C02 - Zeros of Polynomials
	Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	C06 - Summation of Series
	Chapter Introduction

	D01 - Quadrature
	Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 - Ordinary Differential Equations
	D02M/N Introduction

	D03 - Partial Differential Equations
	Chapter Introduction

	D04 - Numerical Differentiation
	Chapter Introduction

	D05 - Integral Equations
	Chapter Introduction

	D06 - Mesh Generation
	Chapter Introduction

	E01 - Interpolation
	Chapter Introduction

	E02 - Curve and Surface Fitting
	Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	Chapter Introduction

	F - Linear Algebra
	Chapter Introduction

	F01 - Matrix Factorizations
	Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	F03 - Determinants
	Chapter Introduction

	F04 - Simultaneous Linear Equations
	Chapter Introduction

	F05 - Orthogonalisation
	Chapter Introduction

	F06 - Linear Algebra Support Routines
	Chapter Introduction

	F07 - Linear Equations (LAPACK)
	Chapter Introduction

	F08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	F11 - Sparse Linear Algebra
	Chapter Introduction

	F12 - Large Scale Eigenproblems
	Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	Chapter Introduction

	G02 - Correlation and Regression Analysis
	Chapter Introduction

	G03 - Multivariate Methods
	Chapter Introduction

	G04 - Analysis of Variance
	Chapter Introduction

	G05 - Random Number Generators
	Chapter Introduction

	G07 - Univariate Estimation
	Chapter Introduction

	G08 - Nonparametric Statistics
	Chapter Introduction

	G10 - Smoothing in Statistics
	Chapter Introduction

	G11 - Contingency Table Analysis
	Chapter Introduction

	G12 - Survival Analysis
	Chapter Introduction

	G13 - Time Series Analysis
	Chapter Introduction

	H - Operations Research
	Chapter Introduction

	M01 - Sorting
	Chapter Introduction

	P01 - Error Trapping
	Chapter Introduction

	S - Approximations of Special Functions
	Chapter Introduction

	X01 - Mathematical Constants
	Chapter Introduction

	X02 - Machine Constants
	Chapter Introduction

	X03 - Inner Products
	Chapter Introduction

	X04 - Input/Output Utilities
	Chapter Introduction

	X05 - Date and Time Utilities
	Chapter Introduction



